Complex formation and interactions between transcription factors essential for human prolactin receptor gene transcription.
نویسندگان
چکیده
The protein association of estrogen receptor α ERα with DNA-bound SP1 and C/EBPβ is essential for the 17β-estradiol (E2)-induced activation of human prolactin receptor (hPRLR) gene transcription. Protein-protein interaction and complex formation at the hPIII promoter of hPRLR was investigated. The basic region and leucine zipper (bZIP) of C/EBPβ, zinc finger (ZF) motifs of SP1, and the DNA binding domain of ERα were identified as regions responsible for the interactions between transfactors. The E2-induced interaction was confirmed by bioluminescence resonance energy transfer (BRET) assays of live cells. The combination of BRET/bimolecular luminescence complementation assay revealed that ERα exists as a constitutive homodimer, and E2 induced a change(s) in ERα homodimer conformation favorable for its association with C/EBPβ and SP1. Chromatin immunoprecipitation and small interfering RNA knockdown of members of the complex in breast cancer cells demonstrated the endogenous recruitment of components of the complex onto the hPIII promoter of the hPRLR gene. SP1 is the preferred transfactor for the recruitment of ERα to the complex that facilitates the C/EBPβ association. The E2/ERα-induced hPRLR transcription was demonstrated in ERα-negative breast cancer cells. This study indicates that the enhanced complex formation of ERα dimer with SP1 and C/EBPβ by E2 has an essential role in the transcriptional activation of the hPRLR gene.
منابع مشابه
Regulation of gene expression in tissue engineering, differentiation and bone regeneration of ossifying stem cells
Cells that make up the bodychr('39')s tissues are usually three-dimensional architecture, the threedimensional culture system enables cells to create natural and in vivo interactions which is an ideal environment for 3D (Three-dimensional) cell growth and issues such as exchange of similar food exchanges inside Capillary in living tissue. In tissue engineering discussion, cell scaffolding is hi...
متن کاملInteractions of the ubiquitous octamer-binding transcription factor-1 with both the signal transducer and activator of transcription 5 and the glucocorticoid receptor mediate prolactin and glucocorticoid-induced β-casein gene expression in mammary epithelial cells.
Regulation of milk protein gene expression by lactogenic hormones (prolactin and glucocorticoids) provides an attractive model for studying the mechanisms by which protein and steroid hormones synergistically regulate gene expression. β-Casein is one of the major milk proteins and its expression in mammary epithelial cells is stimulated by lactogenic hormones. The signal transducer and activato...
متن کاملP-30: The Investigation of Transcript Expression Level of Mitochondrial Transcription Factor A (TFAM) during In Vitro Maturation (IVM) in Single Human Oocytes
Background In vitro maturation (IVM) of human oocytes has acquired increasing attention in infertility treatment with great promise. This technique is an alternative conventional in vitro fertilization-embryo transfer (IVF-ET), and can be reduced the side effects of gonadotropin stimulation such as ovarian hyperstimulation (OHSS). Oocyte maturation is a complex process including cytoplasmic and...
متن کاملEssential role of endogenous prolactin and CDK7 in estrogen-induced upregulation of the prolactin receptor in breast cancer cells
Our early studies have shown that Estradiol (E2)/Estrogen Receptor α (ER) in a non-DNA dependent manner through complex formation with C/EBPβ/SP1 induced transcriptional activation of the generic hPIII promoter and expression of the Prolactin Receptor (PRLR) receptor in MCF-7 cells. Subsequent studies demonstrated effects of unliganded ERα with requisite participation of endogenous PRL on the a...
متن کاملMapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels
κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 31 16 شماره
صفحات -
تاریخ انتشار 2011